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1 Tail Inequalities

Tail inequalities are bounds on the probability mass of the tail of a distribution. They give
us a way to say that it is unlikely that a random variable will take on a value that is too far
away from its expectation.

1.1 Markov’s Inequality

This is the most basic inequality we will use. This is useful if the only thing we know about
a random variable is its expectation. It will also be useful to derive other inequalities later.

Proposition 1.1 (Markov’s Inequality) Let X be non-negative variable. Then,

P [X ≥ t] ≤ E [X]

t
. (1)

Equivalently,

P [X ≥ a · E [X]] ≤ 1
a

. (2)

Proof: Immediate from basic facts about expectation.

E[X] = P [X ≥ t] · E [X|X ≥ t] + P [X < t] · E [X|X < t]
≥ P [X ≥ t] · t + 0

1.2 Chebyshev’s Inequality

The variance of a random variable X is defined as

Var [X] = E
[
(X − E [X])2] .
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It is often convenient to simplify this as follows:

E
[
(X − E [X])2] = E

[
X2 − 2X E [X] + E [X]2

]
= E

[
X2]− 2 E [X]E [X] + E [X]2

= E
[
X2]− E [X]2 .

Also, for two random variables X and Y, we define the covariance as

Cov [X, Y] = E [(X − E [X])(Y − E [Y])] = E [XY]− E [X] · E [Y] .

So, if two random variables are independent, their covariance is 0.

Proposition 1.2 (Chebyshev’s inequality) Let X be a random variable and let µ = E [X].
Then,

P [|X − µ| ≥ t] ≤ Var [X]

t2 =
E
[
(X − µ)2]

t2 . (3)

Proof: Consider the non-negative random variable (X − µ)2. Applying Markov’s in-
equality we have

P [|X − µ| ≥ t] = P
[
(X − µ)2 ≥ t2] ≤

E
[
(X − µ)2]

t2 .

Chebyshev’s inequality is particularly powerful when the overall random variable X can
be decomposed into a sum of pairwise independent random variables Xi. (Later we will
see even more powerful inequalities that can be used when X can be decomposed into a
sum of mutually independent random variables Xi).

Proposition 1.3 Let X = X1 + . . . + Xn where the Xi are pairwise independent. Then Var [X] =
Var [X1] + . . . + Var [Xn].

Proof: Var [X] = E[X2]− E[X]2

= E

[
∑

i
∑

j
XiXj

]
−
(

∑
i

E[Xi]

)2

= ∑
i

E[X2
i ] + ∑

i
∑
j ̸=i

E[XiXj]− ∑
i

E[Xi]
2 − ∑

i
∑
j ̸=i

E[Xi]E[Xj]

= ∑
i
Var [Xi] (using pairwise independence)
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2 Coin tosses revisited

An unbiased coin is tossed n times. Let Xi be the indicator for the event that the ith toss
is a heads, and let X = ∑i Xi be the total number of heads. So, by linearity of expectation,
E[X] = n/2. What is the chance that X is much larger than its expectation? Let us now
compare the kind of bounds we get using Markov’s and Chebyshev’s inequalities.

2.1 Application of Markov’s inequality

Using Markov’s inequality we have,

P [X ≥ 3n/4] ≤ E [X]

(3n/4)
=

2
3

⇒ P
[

X − n
2
≥ n

4

]
≤ 2

3
.

2.2 Application of Chebyshev’s inequality

Chebyshev’s inequality gives a better bound on the chance of this occuring (and then we’ll
see tail bounds that give even stronger bounds). For this we need to calculate the variance
of X, which we can do using Proposition 1.3.

In particular, for each Xi we have:

Var [Xi] = E[X2
i ]− E[Xi]

2

=
1
2
− 1

4
=

1
4

.

So, by Proposition 1.3, we have Var [X] = n
4 . Applying Chebyshev’s inequality, we get:

P
[∣∣∣X − n

2

∣∣∣ ≥ t
]

≤ n/4
t2 .

Setting t = n/4 and t =
√

n, gives the following bounds

P
[∣∣∣X − n

2

∣∣∣ ≥ n
4

]
≤ 4

n
and P

[∣∣∣X − n
2

∣∣∣ ≥ √
n
]

≤ 1
4

Thus, Chebyshev’s inequality gives a much stronger bound on the probability of X being
larger than its expectation by n/4, and can also bound the probability of deviations as
small as

√
n. In particular, it gives a non-trivial bound whenever the deviation is larger

than
√

Var [X], a quantity which is referred to as the standard deviation of the random vari-
able X.
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3 Threshold Phenomena in Random Graphs

We consider the Erdős-Rényi model of Random Graphs. To generate a random graph with
n vertices in this model, for every pair of vertices {i, j}, we put an edge between i and j
independently with probability p. This model is denoted by Gn,p.

For many properties, these graphs have what are called “threshold phenomena”: for some
function f (n), for p ≪ f (n) (i.e., limn→∞(p/ f (n)) = 0) they almost surely do not have
the property, and for p ≫ f (n) (i.e., limn→∞(p/ f (n)) = ∞) they almost surely do have the
property. We will see one such property here, namely the property of containing a 4-clique.

Theorem 3.1 Let G be generated randomly according to the model Gn,p graph. Then,

1. If p ≪ n−2/3, then P [G contains a 4-clique] → 0 as n → ∞.

2. If p ≫ n−2/3, then P [G contains a 4-clique] → 1 as n → ∞.

Proof: The easier direction here is part (1), which we can prove using Markov’s inequality.
For each of the (n

4) sets S of four vertices, define indicator random variable XS for the event
that S is a clique. Let X = ∑S XS be the total number of 4-cliques in the graph. Then
E[X] = ∑S E[XS] = (n

4)p6. If p ≪ n−2/3 then E[X] = o(1). By Markov’s inequality,
P [X ≥ 1] ≤ E[X]/1 = o(1) as desired.

For part (2), if p ≫ n−2/3, then E[X] ≫ 1. But this in itself is not enough to guarantee that
P [X = 0] = o(1). For this, we will use Chebyshev’s inequality. In particular, plugging in
t = E[X], Chebyshev’s inequality tells us that P [X = 0] ≤ Var[X]

E[X]2
. So, if we can show that

Var [X] = o(E[X]2), then E[X] ≫ 1 will indeed be sufficient.

We can break down Var [X] into its component pieces:

Var [X] = E[X2]− E[X]2 = ∑
S,S′

E[XSXS′ ]− E[X]2.

Let us now consider a few cases for S, S′. First, if S and S′ share at most one vertex in
common then XS and XS′ are independent, so E[XSXS′ ] = E[XS]E[XS′ ]. The sum of all
of these is at most E[X]2 and so is covered by the −E[X]2 term in the variance. If S and
S′ share two vertices in common, then XS and XS′ are not independent, but we can use
the fact that there are at most O(n6) such cases, and each case has E[XSXS′ ] = p11, so the
overall contribution is O(n6 p11). This is o(E[X]2) since E[X] = Θ(n4 p6) and p ≫ n−2/3.
If S and S′ share three vertices in common, we have at most O(n5) such cases and each
case has E[XSXS′ ] = p9, so the overall contribution is O(n5 p9) = o(E[X]2). Finally, if S
and S′ share all four vertices, we get E[X] = o(E[X]2). So, we have Var [X] = o(E[X]2) as
desired.
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